

A Peripheral CB1 Antagonist for the Treatment of Type 2 Diabetes

Institute of Biotechnology and Pharmaceutical Research National Health Research Institutes Miaoli, Taiwan

1

Company Name: National Health Research Institutes Contact Person: Hua-Hsuan Liang Tel: +886-37-246-166 ext. 33206 E-mail: huahsuan@nhri.org.tw Address: 35 Keyan Road, Zhunan, Miaoli County 35053,Taiwan Website: http://www.nhri.org.tw/

Institute of Biotechnology and Pharmaceutical Research

Cannabinoid Central Action on Appetite via Cannabinoid Receptor 1 (CB1)

OH.

Cannabis sativa

Endocannabinoids

• (–)- Δ 9-THC and endocannabinoids stimulate food intake.

♦ Cannabinoids induce overconsumption by amplifying the palatability.

♦ These effects are mediated by cannabinoid receptor 1 (CB1) in the brain.

Institute of Biotechnology and Pharmaceutical Research

Pagotto, U. et al. Endocr Rev (2006)

Peripheral CB1 and Type 2 Diabetes

Institute of Biotechnology and Pharmaceutical Research

Overactivation of Endocannabinoid Tone in Obese and Diabetic Patients

Tissue levels in obese patients

Matias et al. (2006)

Plasma levels in diabetic patients

Endocannabinoids:

anandamide and 2-arachidonoyl glycerol (2-AG)

Physicochemical properties greatly affect the passive transcellular BBB permeation of compounds.

The following key structural features are suggested for discovery of CNS drugs.

Physicochemical properties	Rule (Pardridge)	Rule (Clark)
Hydrogen bonds	H- bonds < 8-10	N +O < 6
Lipophilicity	Higher Log P	CLog P- (N+O) > 0; Log D=1-3
Polar surface area (PSA)	lower	< 60~70 Ų
Molecular weight (MW)	< 400-500	< 450
Acidity	No acids	

* To obtain P-glycoprotein Efflux compounds is another alternative.

Profiles of DBPR211

	Profiles	DBPR211	Note	
In vitro	<i>K</i> _i (nM)	1.6	In vitro Safety Pharmacology: Off-target profiling: 163	
	EC ₅₀ (nM)	3.0		
	Selectivity (CB2/CB1)	7		
In vivo	C _{max} (ng/mL)	358		
	AUC ((ng/mL)x hr)	3824	PK dose (PO, rat): Low brain level at 24 hr after single dosing at 10 mg/kg	
	T _{1/2} (h)	5.9		
	BA (%)	14.7 %		

Limited Brain Penetration of DBPR211

Study	Desirable effect	DBPR211
Brain to plasma (B/P) ratio	Low B/P ratio (<1/30)	1/64
In vivo occupancy	Limited binding to the brain regions	\checkmark
PET imaging	Limited brain distribution of ¹⁸ F-DBPR211	\checkmark
Tetrad response	No reversing effects in CB1 agonist-induced tetrad response at a high dose (hypolocomotion, analgesia, hypothermia and catalepsy)	\checkmark
Food intake	No acute effect in food intake suppression in normal rats or mice	\checkmark
Gastrointestinal transit	Reversing effects in CB1 agonist-induced delay in gastrointestinal transit at a low dose	

In Vivo Efficacy of DBPR211

3ody weight change (%)

DIO model

db/db diabetic mice

Amelioration of insulin resistance

Diet-induced obese (DIO) mice

- Weight loss
- Reduction in fasting glucose and insulin
- Amelioration of insulin resistance
- Decrease in plasma ALT level and hepatic triglycerides

Zucker diabetic fa/fa (ZDF) rats

- Amelioration of insulin resistance
- Decrease in HbA1c

Major Advantages and Differentiation of DBPR211

- Potent and highly selective antagonist of peripheral CB1 receptor
- Minimum penetration into brain with no central effects (supported by direct drug exposure measurement and ¹⁸F-labelled PET imaging studies) – does not compete with the centrally mediated CB1 agonist (CP55940)
- Chronic treatment (oral administration) effectively ameliorates insulin resistance in diabetic rodents and DIO mice. HbA1c was reduced in ZDF rat model. Weight loss and reduction in hepatic steatosis in DIO mice was also observed.
- Orally bioavailable with acceptable DMPK profile
- A novel and patentable lipid-based formulation has been successfully developed for GLP and phase I/II studies.
- Potential First-in-Class asset for T2DM, obesity and non-alcoholic fatty liver disease